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Mathematical Tripos Part IA

M. G. Worster

Differential Equations A3

Michaelmas 2014

DIFFERENTIAL EQUATIONS

Examples Sheet 1

The starred questions are intended as extras: do them if you have time, but not at the expense of

unstarred questions on later sheets.

1. Show, from first principles, that, for non-negative integer n
d

dx
xn = nxn−1.

2. Let f(x) = u(x)v(x). Use the definition of the derivative of a function to show that

df

dx
= u

dv

dx
+

du

dx
v.

3. Calculate

(i)
d

dx

(

e−x2

sin 2x
)

,

(ii)
d12

dx12
(x cos x) using (a) the Leibniz rule and (b) repeated application of the product rule,

(iii)
d5

dx5

(

[ln(x)]2
)

.

4. (i) Write down or determine the Taylor series for f(x) = eax about x = 1.

(ii) Write down or determine the Taylor series for ln(1 + x) about x = 0. Then

show that

lim
k→∞

k ln(1 + x/k) = x

and deduce that

lim
k→∞

(1 + x/k)k = ex.

What property of the exponential function did you need?
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5. Determine by any method the first three non-zero terms of the Taylor expansions about x = 0
of

(i) (x2 + a)−3/2,

(ii) ln(cos x),

iii) exp

{

− 1

(x − a)2

}

,

where a is a constant.

6. By considering the area under the curves y = ln x and y = ln(x − 1), show that

N ln N − N < ln(N !) < (N + 1) ln(N + 1) − N.

Hence show that

| ln N ! − N ln N + N | < ln

(

1 +
1

N

)N

+ ln(1 + N).

7. Show that y(x) =
∫

∞

x
e−t2dt satisfies the differential equation y′′ + 2xy′ = 0.

*8. Let Jn be the indefinite integral

Jn =

∫

x−n dx

(ax2 + 2bx + c)
1

2

.

By integrating
∫

x−n−1(ax2 + 2bx + c)
1

2 dx by parts, show that for n 6= 0,

ncJn+1 + (2n − 1)bJn + (n − 1)aJn−1 = −x−n(ax2 + 2bx + c)
1

2 .

Hence evaluate

∫ 2

1

dx

x5/2(x + 2)
1

2

.
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*9. In a large population, the proportion with income between x and x + dx is f(x)dx. Express
the mean (average) income µ as an integral, assuming that any positive income is possible.

Let p = F (x) be the proportion of the population with income less than x, and G(x) be the
mean (average) income earned by people with income less than x. Further, let θ(p) be the
proportion of the total income which is earned by people with income less than x as a function
of the proportion p of the population which has income less than x. Express F (x) and G(x) as
integrals and thence derive an expression for θ(p), showing that

θ(0) = 0, θ(1) = 1

and

θ′(p) =
F−1(p)

µ
, θ′′(p) =

1

µf(F−1(p))
> 0.

Sketch the graph of a function θ(p) with these properties and deduce that unless there is
complete equality of income distribution, the bottom (in terms of income) 100p% of the
population receive less than 100p% of the total income, for all positive values of p.

10. For f(x, y) = exp(−xy), find (∂f/∂x)y and (∂f/∂y)x. Check that
∂2f

∂x∂y
=

∂2f

∂y∂x
. Find

(∂f/∂r)θ and (∂f/∂θ)r,

(i) using the chain rule,

(ii) by first expressing f in terms of the polar coordinates r, θ,

and check that the two methods give the same results.

[Recall: x = r cos θ, y = r sin θ. ]

11. If xyz + x3 + y4 + z5 = 0 (an implicit equation for any of the variables x, y, z in terms of the
other two), find

(

∂x

∂y

)

z

,

(

∂y

∂z

)

x

,

(

∂z

∂x

)

y

and show that their product is −1.

Does this result hold for an arbitrary relation f(x, y, z) = 0 ?

What about f(x1, x2, · · · , xn) = 0 ?

3
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12. In thermodynamics, the pressure of a system, p, can be considered as a function of the
variables V (volume) and T (temperature) or as a function of the variables V and S (entropy).

(i) By expressing p(V, S) in the form p(V, S(V, T )) evaluate

(

∂p

∂V

)

T

−
(

∂p

∂V

)

S

in terms of

(

∂S

∂V

)

T

and

(

∂S

∂p

)

V

.

(ii) Hence, using TdS = dU + pdV (conservation of energy with U the internal energy), show
that

(

∂lnp

∂lnV

)

T

−
(

∂lnp

∂lnV

)

S

=

(

∂(pV )

∂T

)

V

[

p−1(∂U/∂V )T + 1

(∂U/∂T )V

]

.

[

Hint:
(

∂ln p
∂ln V

)

T
= V

p

(

∂p
∂V

)

T

]

13. By differentiating I with respect to λ, show that

I(λ, α) =

∫

∞

0

sin λx

x
e−αxdx = tan−1 λ

α
+ c(α).

Show that c(α) is constant (independent of α) and hence, by considering the limits α → ∞
and α → 0, show that, if λ > 0,

∫

∞

0

sin λx

x
dx =

π

2
.

14. Let f(x) =
[

∫ x

0
e−t2dt

]2

and let g(x) =
∫ 1

0
[e−x2(t2+1)/(1 + t2)]dt.

Show that
f ′(x) + g′(x) = 0.

Deduce that
f(x) + g(x) = π/4,

and hence that
∫

∞

0

e−t2dt =

√
π

2
.

Comments and corrections may be sent by email to mgw1@cam.ac.uk
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Mathematical Tripos Part IA

M. G. Worster
Differential Equations A3

Michaelmas 2014
Examples Sheet 2

The starred questions are intended as extras: do them if you have time, but not at the expense of

unstarred questions on earlier sheets

1. According to Newton’s law of cooling, the rate of change of the temperature of an object is
proportional to the difference in temperature between the object and its surroundings. A
forensic scientist enters a crime scene at 5:00 pm and discovers a cup of tea at temperature
40◦C. At 5:30 pm its temperature is only 30◦C. Giving all details of the mathematical
methodology employed and assumptions made, estimate the time at which the tea was made.

2. Determine the half-life of Thorium-234 if a sample of 5 grams is reduced to 4 grams in one
week. What amount of Thorium is left after three months?

3. Find the solutions of the initial value problems

(i) y′ + 2y = e−x , y(0) = 1;

(ii) y′ − y = 2xe2x , y(0) = 1.

4. Show that the general solution of

y′ − y = eux , u 6= 1 , (∗)

can be written (by means of a suitable choice of A) in the form

y(x) = Aex +
eux − ex

u − 1
.

By taking the limit as u → 1 and using l’Hôpital’s rule, find the general solution of (*) when
u = 1.

5. Solve

(i) y′x sin x + (sin x + x cos x)y = xex ;

(ii) y′ tan x + y = 1 ;

(iii) y′ = (ey − x)−1.

1
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6. Find the general solutions of

(i) y′ = x2(1 + y2) ,

(ii) y′ = cos2 x cos2 2y ,

(iii) y′ = (x − y)2 ,

(iv) (ey + x)y′ + (ex + y) = 0 .

7. Find all solutions of the equation

y
dy

dx
− x = 0 ,

and give a sketch showing the solutions. By means of the substitution y = log u − x, deduce
the general solution of

(log u − x)
du

dx
− u log u = 0 .

Sketch the solutions, starting from your previous sketch and drawing first the lines to which
y = ±x are mapped.

8. In each of the following sketch a few solution curves. It might help you to consider values of y′

on the axes, or contours of constant y′, or the asymptotic behaviour when y is large.

(i) y′ + xy = 1 ,

(ii) y′ = x2 + y2 ,

(iii) y′ = (1 − y)(2 − y) .

9. (i) Sketch the solution curves for the equation

dy

dx
= xy .

Find the family of solutions determined by this equation and reassure yourself that your
sketches were appropriate.

(ii) Sketch the solution curves for the equation

dy

dx
=

x − y

x + y
.

By rewriting the equation in the form

(

x
dy

dx
+ y

)

+ y
dy

dx
= x ,

find and sketch the family of solutions.

*Does the substitution y = ux lead to an easier method of solving this equation?

2
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10. Measurements on a yeast culture have shown that the rate of increase of the amount, or
‘biomass’, of yeast is related to the biomass itself by the equation

dN

dt
= aN − bN2 ,

where N(t) is a measure of the biomass at time t, and a and b are positive constants. Without
solving the equation, find in terms of a and b:

(i) the value of N at which dN/dt is a maximum;

(ii) the values of N at which dN/dt is zero, and the corresponding values of d2N/dt2.

Using all this information, sketch the graph of N(t) against t, and compare this with what you
obtain by solving the equation analytically for 0 ≤ N ≤ a/b.

11. Water flows into a cylindrical bucket of depth H and cross-sectional area A at a volume flow
rate Q which is constant. There is a hole in the bottom of the bucket of cross-sectional area
a ≪ A. When the water level above the hole is h, the flow rate out of the hole is a

√
2gh,

where g is the gravitational acceleration. Derive an equation for dh/dt. Find the equilibrium
depth he of water, and show that it is stable.

12. In each of the following equations for y(t), find the equilibrium points and classify their
stability properties:

(i) dy

dt
= y(y − 1)(y − 2) ,

(ii) dy

dt
= −2 tan−1[y/(1 + y2)] ,

*(iii) dy

dt
= y3(ey − 1)2 .

13. Investigate the stability of the constant solutions (un+1 = un) of the discrete equation

un+1 = 4un(1 − un).

In the case 0 ≤ u0 ≤ 1, use the substitution u0 = sin2 θ to find the general solution and verify
your stability results. Can you find an explicit form of the general solution in the case u0 > 1?

*14. Two identical snowploughs plough the same stretch of road in the same direction. The first
starts at t = 0 when the depth of snow is h0 and the second starts from the same point T
seconds later. Snow falls so that the depth of snow increases at a constant rate of k ms−1. The
speed of each snowplough is k/(ah) where h is the depth of snow it is ploughing and a is a
constant, and each snowplough clears all the snow. Show that the time taken for the first
snowplough to travel x metres is

(eax − 1)h0k
−1 seconds.

3
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Show also that the time t by which the second snowplough has travelled x metres satisfies the
equation

1

a

dt

dx
= t − (eax − 1)h0k

−1 .

Hence show that the snowploughs will collide when they have moved a distance kT/(ah0)
metres.

Comments and corrections may be sent by email to mgw1@cam.ac.uk
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Mathematical Tripos Part IA

M. G. Worster

Differential Equations A3

Michaelmas 2014
Examples Sheet 3

The starred questions are intended as extras: do them if you have time, but not at the expense of

questions on later sheets

1. Find the general solutions of
(i) y′′ + 5y′ + 6y = e3x ,
(ii) y′′ + 9y = cos 3x ,
(iii) y′′ + 2y′ + 5y = 0,
(iv) y′′ − 2y′ + y = (x − 1)ex .

2. The function y(x) satisfies the linear equation

y′′ + p(x)y′ + q(x)y = 0.

The Wronskian W (x) of two independent solutions, denoted y1(x) and y2(x), is defined to be

W (x) =

∣

∣

∣

∣

y1 y2

y′

1 y′

2

∣

∣

∣

∣

.

Let y1(x) be given. Use the Wronskian to determine a first-order inhomogeneous differential
equation for y2(x). Hence, show that

y2(x) = y1(x)

∫ x

x0

W (t)

y1(t)2
dt. (∗)

Show that W (x) satisfies
dW

dx
+ p(x)W = 0.

Verify that y1(x) = 1 − x is a solution of

xy′′ − (1 − x2)y′ − (1 + x)y = 0. (†)

Hence, using (*) with x0 = 0 and expanding the integrand in powers of t to order t3, find the first
three non-zero terms in the power series expansion for a solution, y2, of (†) that is independent of y1

and satisfies y2(0) = 0, y′′

2(0) = 1.

3. Find the general solutions of
(i) yn+2 + yn+1 − 6yn = n2,
(ii) yn+2 − 3yn+1 + 2yn = n,
(iii) yn+2 − 4yn+1 + 4yn = an, a real.

1
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4. (i) Find the solution of y′′ − y′ − 2y = 0 that satisfies y(0) = 1 and is bounded as
x → ∞.

(ii) Solve the related difference equation

(yn+1 − 2yn + yn−1) −
1
2
h(yn+1 − yn−1) − 2h2yn = 0 ,

and show that if 0 < h ≪ 1 the solution that satisfies y0 = 1 and for which yn is bounded as n → ∞
is approximately yn = (1 − h + 1

2
h2)n. Explain the relation with the solution of (i).

5. Show that

1

r2

d

dr

(

r2dT

dr

)

≡
1

r

d2

dr2
(rT )

and hence solve the equation

1

r2

d

dr

(

r2dT

dr

)

= k2T

subject to the conditions that T is finite at r = 0 and T (1) = 1.

6. Given the solution y1(x), find a second solution of the following equations:
(i) x(x + 1)y′′ + (x − 1)y′ − y = 0, y1(x) = (x + 1)−1 ;
(ii) xy′′ − y′ − 4x3y = 0, y1(x) = ex2

.

*7. The n functions yj(x) (1 ≤ j ≤ n) are independent solutions of the equation

y(n)(x) + p1(x)y(n−1)(x) + · · · + pn−1(x)y′(x) + pn(x)y(x) = 0.

Let W be the n × n matrix whose i, j element Wij is y
(i−1)
j (x) (so that detW = W , the Wronskian).

Find a matrix A, which does not explicitly involve the yj such that

W′ = AW

where W′ is the matrix whose elements are given by (W′)ij = W ′

ij. Using the identity

(ln detW)′ = trace
(

W′W−1
)

,

express W in terms of p1(x). [You can prove this identity by writing W = PDP−1 where D is in
Jordan normal form (which is upper triangular) and using trace ABC = traceBCA.]

8. Let y(x) satisfy the inhomogeneous equation

y′′ − 2x−1y′ + 2x−2y = f(x) . (∗)

Set

(

y

y′

)

= u(x)

(

y1

y′

1

)

+ v(x)

(

y2

y′

2

)

,

where y1(x) and y2(x) are two independent solutions of (∗) when f(x) = 0, and u(x) and v(x) are
unknown functions. Obtain first-order differential equations for u(x) and v(x), and hence find the

2
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most general solution of (∗) in the case f(x) = x sin x. Are the functions u(x) and v(x) completely
determined by this procedure?

9. A large oil tanker of mass W floats on the sea of density ρ. Suppose the tanker is given a small
downward displacement z. The upward force is equal to the weight of water displaced (Archimedes’
Principle). If the cross-sectional area A of the tanker at the water surface is constant, show that this
upward force is gρAz, and hence that

z̈ +
gρA

W
z = 0 .

Suppose now that a mouse exercises on the deck of the tanker producing a vertical force m sin ωt,
where ω = (gρA/W )1/2. Show that the tanker will eventually sink. In practice, as the vertical
motion of the tanker increases, waves will be generated. Suppose they produce an additional
damping 2kż. Discuss the motion for a range of values of k.

10. Find and sketch the solution of

ÿ + y = H(t − π) − H(t − 2π),

where H is the Heaviside step function, subject to

y(0) = ẏ(0) = 0 ,

y(t) and ẏ(t) continuous at t = π, 2π .

11. Solve
y′′ − 4y = δ(x − a),

where δ is the Dirac delta function, subject to the boundary conditions that y is bounded as
|x| → ∞. Sketch the solution.

12. Solve
ÿ + 2ẏ + 5y = 2δ(t),

where δ is the Dirac delta function, given that y = 0 for t < 0. Give an example of a physical system
that this describes.

3
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*13. Show that, for suitably chosen P (x), the transformation y(x) = P (x)v(x) reduces the equation

y′′ + p(x)y′ + q(x)y = 0

to the form

v′′ + J(x)v = 0 . (†)

The sequence of functions vn(x) is defined, for a given function J(t) and in a given range 0 ≤ x ≤ R,
by v0(x) = a + bx and

vn(x) =

∫ x

0

(t − x)J(t)vn−1(t)dt. (n ≥ 1) .

Show that v′′

n(x) + J(x)vn−1 = 0 (n ≥ 1) and deduce that v(x) =
∑

∞

0 vn(x) satisfies (†) with the
initial conditions v(0) = a, v′(0) = b.
[N.B. You may assume that the sum which defines v(x) converges sufficiently nicely to allow
term-by-term differentiation. In fact, you can show by induction that if |J(x)| < m and |v0(x)| < A
for the range of x under consideration, then |vn(x)| ≤ Amnx2n/(2n)! – try it! Convergence is
therefore exponentially fast.]

What does this tell us about the existence problem for general second-order linear equations
with given initial conditions?

*14 The expanding universe. Einstein’s equations for a flat isotropic and homogeneous universe can
be written as :

ä

a
= −

4π

3
(ρ + 3p) +

Λ

3
, H ≡

(

ȧ

a

)

=

(

8π

3
ρ +

Λ

3

)1/2

,

where a is the scale factor measuring the expansion of the universe (ȧ > 0), ρ and p are the
time-dependent energy density and pressure of matter, Λ is the cosmological constant and H > 0
the Hubble parameter. Use these equations to establish the following: If Λ ∼ 0 and ρ + 3p > 0 the
acceleration ä < 0 and the graph of a(t) must be concave downward implying that at a finite time a
must reach a = 0 (the big bang). Using the tangent of the graph at present time t = t0 show that
the age of the universe is bounded by t0 < H−1(t0).
Consider the physical situations of a matter dominated universe (Λ, p ∼ 0 ) and a radiation
dominated universe (Λ ∼ 0, p = ρ/3). In each case, reduce the two equations above to one single
differential equation for a which is homogeneous in t (invariant under t → λt) and then show that
there is a solution of the type a = tα. Determine the value of α for each case and verify that ä < 0.
Now consider a Λ dominated universe (ρ, p << Λ), solve the differential equation for a(t) and show
that it corresponds to an accelerated universe (ä > 0)for Λ > 0. This could describe the universe
today and/or a very early period of exponential expansion known as inflation.

Comments and corrections may be sent by email to mgw1@cam.ac.uk

4



C
op

yr
ig

ht
 ©

 2
01

4 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

Mathematical Tripos Part IA

M. G. Worster

Differential Equations A3

Michaelmas 2014
Examples Sheet 4

The starred questions are intended as extras: do them if you have time, but not at the expense of
unstarred questions on earlier sheets

1. By finding solutions as power series in x solve

4xy′′ + 2(1 − x)y′ − y = 0 .

2. Find the two independent series solutions about x = 0 of

y′′ − 2xy′ + λy = 0,

for a constant λ. Show that for λ = 2n, with n a positive integer, the solutions are
polynomials of degree n. These are the Hermite polynomials relevant for the solution of the
simple harmonic oscillator in quantum mechanics.

3. What is the nature of the point x = 0 with respect to the differential equation

x2y′′ − xy′ + (1 − γx)y = 0.

Find a series solution about x = 0 for γ 6= 0 and write down the form of a second, independent
solution. Find two independent solutions of the equation for γ = 0.

4. Bessel’s equation is

x2y′′ + xy′ + (x2 − ν2)y = 0 .

For ν = 0, find a solution in the form of a power series about x = 0.

For ν = 1

2
, find two independent series solutions of this form. Perform also the change of

variables y(x) = z(x)/
√

x to simplify the equation, solve for z(x) and compare with the series
result.

5. Find the positions and nature of each of the stationary points of

f(x, y) = x3 + 3xy2 − 3x

and draw a rough sketch of the contours of f .
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6. Find the positions of each of the stationary points of

f(x, y) = sin

(

x − y

2

)

sin y

in 0 < x < 2π, 0 < y < 2π. By using this information and identifying the zero contours of f ,
sketch the contours of f and identify the nature of the stationary points.

7. For the function f(x, y, z) = x2 + y2 + z3 − 3z, find ∇f .

(i) What is the rate of change of f(x, y, z) in the direction normal to the cylinder
x2 + y2 = 25 at the point (3,−4, 4)?

(ii) At which points does ∇f have no component in the z direction?

(iii) Find and classify the stationary points of f .

(iv) Sketch the contours of f and add to the sketch a few arrows showing the directions of ∇f .

8. Use matrix methods to solve

y′ = y − 3z − 6ex , z′ = y + 5z

for y(x), z(x) subject to initial conditions y(0) = 1, z(0) = 0.

9. Consider the linear system

ẋ(t) + P x(t) = z(t) ,

where x(t), z(t) are 2-vectors, P is a real constant 2× 2 matrix and z(t) is a given input. Show
that free motion (i.e. z(t) = 0) is purely oscillatory (i.e. no growth or decay) if and only if
trace P = 0 and detP > 0. [The trace of a square matrix is the sum of its diagonal elements.]

Consider

ẋ + x − y = cos 2t, ẏ + 5x − y = cos 2t + 2a sin 2t ,

for various values of the real constant a. For what value(s) of a is there resonance? What
general principle does this illustrate?

10. Show that the system
ẋ = ex+y − y,

ẏ = −x + xy

has only one fixed point. Find the linearized system about this point and discuss its stability.
Draw the phase portrait near the fixed point.
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11. Use matrix methods to find the general solution of the equations

ẋ = 3x + 2y , ẏ = −5x − 3y . (†)

Sketch the phase-plane trajectories in the vicinity of the origin.

*Show that the set of equations ẋ = Ax, where x(t) is a column vector and A is an
n × n matrix with constant elements, has solutions of the form x = exp(At)x0, where x0 is a
constant vector and

exp(At) ≡ I + At +
1

2!
A2t2 +

1

3!
A3t3 + ... .

Use this method to solve equations (†).
Would you expect this method to work if the elements of A are not constant?

12. Carnivorous hunters of population h prey on vegetarians of population p. In the absence of
hunters the prey will increase in number until their population is limited by the availability of
food. In the absence of prey the hunters will eventually die out. The equations governing the
evolution of the populations are

ṗ = p(1 − p) − ph, ḣ =
h

8

(p

b
− 1

)

, (∗)

where b is a positive constant, and h(t) and p(t) are non-negative functions of time t.

In the two cases 0 < b < 1/2 and b > 1 determine the location and the stability properties of
the critical points of (*). In both of these cases sketch the typical solution trajectories and
briefly describe the ultimate fate of hunters and prey.

13. Consider the change of variables

x = e−s sin t, y = e−s cos t such that u(x, y) = v(s, t).

(i) Use the chain rule to express ∂v/∂s and ∂v/∂t in terms of x, y, ∂u/∂x and ∂u/∂y.

(ii) Find, similarly, an expression for ∂2v/∂t2.

(iii) Hence transform the equation

y2
∂2u

∂x2
− 2xy

∂2u

∂x∂y
+ x2

∂2u

∂y2
= 0

into a partial differential equation for v.

14. Solve
∂y

∂t
− 2

∂y

∂x
+ y = 0

for y(x, t) given y(x, 0) = ex
2

.

[Hint: consider paths in the x − t plane with x = x0 − 2t (x0 constant).]
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15. The function θ(x, t) obeys the diffusion equation

∂θ

∂t
=

∂2θ

∂x2
.

Find, by substitution, solutions of the form

θ(x, t) = f(t) exp[−(x + a)2/4(t + b)],

where a and b are arbitrary constants and the function f is to be determined.

Hence find a solution which satisfies the initial condition

θ(x, 0) = exp[−(x − 2)2] − exp[−(x + 2)2]

and sketch its behaviour for t ≥ 0.

16. Solve the partial differential equation

∂2u

∂x2
+ 2

∂2u

∂x∂y
+

∂2u

∂y2
= 0 (∗)

for u(x, y) by making a change of variables as follows. Define new variables

ξ = x − y, η = x,

and evaluate the partial derivatives of x and y with respect to ξ and η. Writing
v(ξ, η) = u(x, y), use these derivatives and the chain rule to show that

∂v

∂η
=

∂u

∂x
+

∂u

∂y
,

and that the equation
∂2v

∂η2
= 0

is equivalent to equation (∗).
Deduce that the most general solution of (*) is

u(x, y) = f(x − y) + xg(x − y),

where f and g are arbitrary functions.

Solve (∗) completely given that u(0, y) = 0 for all y, whilst u(x, 1) = x2 for all x.

Comments and corrections may be sent by email to mgw1@cam.ac.uk
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